Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis
نویسندگان
چکیده
Although ancient DNA (aDNA) miscoding lesions have been studied since the earliest days of the field, their nature remains a source of debate. A variety of conflicting hypotheses exist about which miscoding lesions constitute true aDNA damage as opposed to PCR polymerase amplification error. Furthermore, considerable disagreement and speculation exists on which specific damage events underlie observed miscoding lesions. The root of the problem is that it has previously been difficult to assemble sufficient data to test the hypotheses, and near-impossible to accurately determine the specific strand of origin of observed damage events. With the advent of emulsion-based clonal amplification (emPCR) and the sequencing-by-synthesis technology this has changed. In this paper we demonstrate how data produced on the Roche GS20 genome sequencer can determine miscoding lesion strands of origin, and subsequently be interpreted to enable characterization of the aDNA damage behind the observed phenotypes. Through comparative analyses on 390,965 bp of modern chloroplast and 131,474 bp of ancient woolly mammoth GS20 sequence data we conclusively demonstrate that in this sample at least, a permafrost preserved specimen, Type 2 (cytosine-->thymine/guanine-->adenine) miscoding lesions represent the overwhelming majority of damage-derived miscoding lesions. Additionally, we show that an as yet unidentified guanine-->adenine analogue modification, not the conventionally argued cytosine-->uracil deamination, underpins a significant proportion of Type 2 damage. How widespread these implications are for aDNA will become apparent as future studies analyse data recovered from a wider range of substrates.
منابع مشابه
Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions
Ancient DNA (aDNA) research has long depended on the power of PCR to amplify trace amounts of surviving genetic material from preserved specimens. While PCR permits specific loci to be targeted and amplified, in many ways it can be intrinsically unsuited to damaged and degraded aDNA templates. PCR amplification of aDNA can produce highly-skewed distributions with significant contributions from ...
متن کاملStatistical evidence for miscoding lesions in ancient DNA templates.
It is generally believed that sequence heterogeneity in PCR products from fossil remains are due to regular DNA polymerase errors as well as miscoding lesions compounded by damage in the template DNA (Pääbo 1990; Handt et al. 1994b, 1996; Höss et al. 1996; Krings et al. 1997). However, it has been difficult to test the frequency with which this assumption holds. First, DNA extractions from foss...
متن کاملAssessing the fidelity of ancient DNA sequences amplified from nuclear genes.
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can l...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007